Dopant-Dopant Interactions in Beryllium doped Indium Gallium Arsenide: an Ab Initio Study

نویسندگان

  • Vadym Kulish
  • Wenyuan Liu
  • Francis Benistant
  • Sergei Manzhos
چکیده

We present an ab initio study of dopant-dopant interactions in beryllium-doped InGaAs. We consider defect formation energies of various interstitial and substitutional defects and their combinations. We find that all substitutional-substitutional interactions can be neglected. On the other hand, interactions involving an interstitial defect are significant. Specially, interstitial Be is stabilized by about 0.9/1.0 eV in the presence of one/two BeGa substitutionals. Ga interstitial is also substantially stabilized by Be interstitials. Two Be interstitials can form a metastable Be-BeGa complex with a dissociation energy of 0.26 eV/Be. Therefore, interstitial defects and defectdefect interactions should be considered in accurate models of Be doped InGaAs. We suggest that In and Ga should be treated as separate atoms and not lumped into a single effective group III element, as has been done before. We identified dopant-centred states which indicate the presence of other charge states at finite temperatures, specifically, the presence of Beint +1 (as opposed to Beint +2 at 0K). a Address all correspondence to this author: [email protected] (S. Manzhos)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy

Accurately measuring and controlling the electrical properties of semiconductor nanowires is of paramount importance in the development of novel nanowire-based devices. In light of this, terahertz(THz) conductivity spectroscopy has emerged as an ideal non-contact technique for probing nanowire electrical conductivity and is showing tremendous value in the targeted development of nanowire devic...

متن کامل

P-doping mechanisms in catalyst-free gallium arsenide nanowires.

Doped catalyst-free GaAs nanowires have been grown by molecular beam epitaxy with the gallium-assisted method. The spatial dependence of the dopant concentration and resistivity have been measured by Raman spectroscopy and four point electrical measurements. Along with theoretical considerations, the doping mechanisms have been revealed. Two competing mechanisms have been revealed: dopant incor...

متن کامل

An ab initio Study of a Model of Single Wall GaN Nanotubes with Oxygen and Zinc as Impurities: Structural and Electronic Properties

We report a comprehensive theoretical study of structural and electronic properties of substitutional oxygen and zinc contaminations in a model of single wall GaN nanotubes by means of ab initio supercell calculations. Our investigation yields many interesting results. The following ones deserve to be developed. Oxygen forms a shallow donor in the single wall GaN nanotubes as in bulk GaN polyty...

متن کامل

Synthesis and local structure of doped nanocrystalline zinc oxides

Nanocrystalline zinc oxides are produced by chemical vapor synthesis and characterized by x-ray diffraction, high resolution transmission electron microscopy, nitrogen sorption, and extended x-ray absorption fine structure. Dopant elements aluminum, gallium, and indium influence the particle size of the powders as well as lattice parameters and local structure. The different effects of the thre...

متن کامل

An experimental and theoretical study on the physical properties of Al doped ZnO thin films

In this research, ZnO thin films with Al impurity as dopant were coated onto cleaned glass substrates by the spray pyrolysis technique. Crystal structure of the thin films was studied via XRD, and UV-vis spectroscopy was carried out to investigate their optical properties. Finally, in order to study the effect of Al impurity in ZnO thin films, the band structures of both pure and doped systems ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017